
A Hierarchical Method for Multi-Class Support Vector Machines

Volkan Vural vvural@ece.neu.edu

Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 USA

Jennifer G. Dy jdy@ece.neu.edu

Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 USA

Abstract

We introduce a framework, which we call
Divide-by-2 (DB2), for extending support
vector machines (SVM) to multi-class prob-
lems. DB2 offers an alternative to the stan-
dard one-against-one and one-against-rest al-
gorithms. For an N class problem, DB2 pro-
duces an N − 1 node binary decision tree
where nodes represent decision boundaries
formed by N−1 SVM binary classifiers. This
tree structure allows us to present a gener-
alization and a time complexity analysis of
DB2. Our analysis and related experiments
show that, DB2 is faster than one-against-
one and one-against-rest algorithms in terms
of testing time, significantly faster than one-
against-rest in terms of training time, and
that the cross-validation accuracy of DB2 is
comparable to these two methods.

1. Introduction

The Support Vector Machine (SVM) is a learning ap-
proach that implements the principle of Structural
Risk Minimization (SRM). Basically, SVM finds a
hyper-plane that maximizes the margin between two
classes.

SVM was originally designed by Vapnik (1995) for bi-
nary classification Yet, many applications have more
than two categories. There are two ways for extend-
ing SVMs to multi-class problems: (1) consider all the
data in one optimization problem. Related research
can be found in (Crammer & Singer, 2000; Weston &
Watkins, 1999), or (2) construct several binary classi-
fiers. One can formulate the multi-class data into one
optimization problem, but since the dominating factor

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

that contributes to the time complexity for training the
algorithm is the number of data samples that exist in
the optimization problem, algorithms in category (1)
are significantly slower than the ones that include sev-
eral binary classifiers where each classifier classifies a
small portion of data. A comparison of the training
time for the different methods is given in (Hsu & Lin,
).

Currently, there exist two popular algorithms to con-
struct and combine several SVMs for N -class prob-
lems. The first one, which is also known as the stan-
dard method(Vapnik, 1998), includes N different clas-
sifiers where N is the number of classes. The ith clas-
sifier is trained while labeling all the samples in the
ith class as positive and the rest as negative. We will
refer to this algorithm as one-against-rest throughout
this paper. The second algorithm, proposed by Knerr
et al. (1990), constructs N×(N−1)/2 classifiers, using
all the binary pairwise combinations of the N classes.
We will refer to this as one-against-one SVMs. To com-
bine these classifiers, while Knerr et al. (1990), sug-
gested using an AND gate, Friedman (1996) suggested
Max Wins algorithm that finds the resultant class by
first voting the classes according to the results of each
classifier and then choosing the class which is voted
most. Platt et al. (2000) proposed another algorithm
in which Directed Acyclic Graph is used to combine
the results of one-against-one classifiers (DAGSVM).

Dumais and Chen (2000) worked on a hierarchical
structure of web content in which natural hierarchies
exist. They divided the problem into two levels. In
the first level they grouped similar classes under some
main topics and called these top-level categories. To
distinguish the categories from each other, they used
one-against-rest algorithm. In the second level, mod-
els are learned to distinguish each category from only
those categories within the same top-level category
again using one-against-rest method. They also ap-
plied different feature sets for different levels.

In this paper, we introduce a new strategy for extend-
ing SVMs to multi-class problems: divide-by-2 (DB2).
One of the most important advantages of DB2 is its
flexibility. It offers various options in its structure so
that one can modify and adapt the algorithm accord-
ing to the needs of the problem, which makes it prefer-
able against the other existing methods. Another ad-
vantage of DB2 is that it creates only N−1 binary clas-
sifiers. This property of DB2, combined with its tree
structure, makes it very fast in terms of testing time
compared to the other algorithms. Moreover, the stan-
dard one-against-one and one-against-rest algorithms
do not have a formulation for an error bound. On the
other hand, the tree structure of DB2 let us present an
error bound similar to the one derived for DAGSVM.

In section 2, we describe how to train and test with
DB2 and present several options that DB2 offers. We
analyze the time complexity of our algorithm in section
3 and generalization error in section 4. In section 5,
we present an adaptive way that can be applied to
every multi-class algorithm. In section 6, we report
the experimental results comparing the accuracy and
time performances of the algorithms. We provide our
conclusions and suggest directions for future research
in section 7.

2. Divide-by-2 Method

Starting from the whole data set, DB2 hierarchically
divides the data into two subsets until every subset
consists of only one class. DB2 divides the data such
that instances belonging to the same class are always
grouped together in the same subset. Thus, DB2 re-
quires only N −1 classifiers. In section 2.1 we describe
in detail how these N − 1 classifiers are built during
training. And, in section 2.2 we illustrate how DB2
classifies new data in the testing phase.

2.1. Training

The basic strategy is to divide the data into two sub-
sets at every hierarchical level. How do we group the
N classes into two? Different criteria can be used for
division. The best way is to group them such that
the resulting subsets have the largest margin. This re-
quires CN

2 comparisons and SVM classifications which
defeats our purpose of building as few classifiers as
possible. Instead, we consider the division step as a
clustering problem. One method is to use k-means
clustering (Forgy, 1965). An even simpler method is
to divide them based on their class mean distances
from the origin (Method 2). One may also wish to
group the classes according to other criteria, such as
speed of implementation (Method 3). One can also

Figure 1. Training

think of other ways of splitting the data.

Method 1: k-means based division

We represent each class with its corresponding
mean (µi) defined by,

µj =
1

mj

∑
xiεω

xi, (1)

where mj is the number of data points in class ω
and xi is a data vector. We, then, group the N
µ′

js into two, using the k-means algorithm.

Method2 : Spherical shells

Let µj be the mean of the data belonging to class
j, and the total mean, M , as

M =
1
m

m∑
i=1

xi (2)

where m is the total number of data points. Us-
ing M as a threshold, we group the classes with
µj smaller than M as the negative class, and the
others as the positive class. In three dimensions,
separation can be visualized as drawing a sphere
separating the space into two parts, and labeling
the classes with µj inside the sphere as negative
and the ones outside as positive.

Method 3: Balanced Subsets

We divide the data into two subsets such that the
difference in the number of the samples in each
subset is minimum. This criteria is useful if the
speed of the process has a high importance or the
data has a skewed class distribution.

We summarize the training phase of DB2 as follows:

1. Using one of the methods mentioned above, divide
all the data samples into two subsets, A and B.

2. Apply SVM to A and B and find the parameters
of the decision boundary separating them.

3. Repeat the steps for both A and B until all the
subclasses include only one class.

Figure 1 illustrates the algorithm flow of the training
process for a five class data sample.

2.2. Testing

DB2 training leads to a binary decision tree structure
for testing. Figure 2 illustrates the decision tree that
we built for the testing phase of the five class problem
depicted in Figure 1.

At the beginning, all the classes are assumed to be
nominees of the true class. At every node, after ap-
plying the corresponding decision function to the test
input, the nominees that do not exist in the region
(positive or negative) in which the test input belongs,
are eliminated. Following the branches that indicate
the same labels as the result of the decisions, we end
up with the predicted class.

The best case occurs if we find the predicted class at
the first node, and the worst case occurs if we find the
predicted class after applying all the N − 1 decision
functions. In one-against-one, a test data is applied
to all N × (N − 1)/2 classifiers. For one-against-rest
exactly N classifiers and for DAGSVM exactly N − 1
classifiers are applied. That is why we expect DB2 to
be faster than all other algorithms in terms of testing
time.

3. Time Complexity

The quadratic optimization problem in the training
phase of SVM, slows down the training process. Platt
(1998) introduced a fast algorithm, which is called
SMO, for training support vector machines. Using
SMO, training a single SVM is observed to scale in
polynomial time with the training set size m:

Positive Negative Positive

Negative Positive

Class 2Class 3

Class 5Class 4Class 1

d2

d1

d3

d4

Negative

Negative Positive

Figure 2. Testing

Tsingle = cmγ (3)

With this relation, we can find the training time for
one-against-rest as

T1−v−rest = cNmγ (4)

From equation 3, the training time for one-against-one
is found as

T1−v−1 = TDAGSV M = 2γ−1cN2−γmγ (5)

assuming that the classes have the same number of
training data samples. With the same assumption,
we can obtain a balanced tree in DB2 using the first
method mentioned in section 2.1. Therefore at any
ith level of the tree (i=0,1,2,... �log2N − 1� + 1), the
training time would be

Tithlevel = 2ic
(m

2i

)γ

(6)

The total training time becomes

TDB2 ≤
�log2N−1�+1∑

i=0

cmγ

(
2
2γ

)i

(7)

which can be proved to be

TDB2 ≤ cmγ 2γ−1

2γ−1 − 1

In (Platt et al., 2000), they assumed that the typical
value for γ is 2. In this case, one-against-one methods
and DB2 have the same time complexity for training.

TDAGSV M = T1−v−1 = TDB2 = 2cmγ

For balanced data sets, DB2 and one-against-one al-
gorithms are close to each other in terms of time com-
plexity, and they are relatively faster than 1-against-
rest. On the other hand, if the training data is un-
balanced, DB2 becomes faster than one-against-one
methods. For instance, if there is one large class and
N − 1 other small classes, we can separate the large
class at the first level of the tree, and the rest of the
classifiers will be trained using the small classes only.
In a one-against-one approach, the large class will con-
tribute to N classifiers, which will slow down the train-
ing process. Related experimental results are provided
in section 6.

4. Generalization Analysis

A nice property of the DB2 framework is that an er-
ror bound can be obtained, unlike the regular one-
against-one and one-against-rest methods except for
the DAGSVM implementation of one-against-one. As
explained in section 2, DB2 forms a decision tree that
is acyclic and directed for testing. A Vapnik Cher-
vonenkis (VC) analysis of directed acyclic graphs is
presented and an error bound is provided in Theorem
2 in (Platt et al., 2000), using the results derived in
(Bennett et al., 2000).

According to the theorem, if we are able to correctly
distinguish class j from the other classes in a random
m-sample with a directed decision graph of a decision
tree G over N classes containing N − 1 decision nodes
with margins γi at node i, then with probability 1−σ,

εj(G) ≤ 130R2

m
(D′log(4em)log(4m) + log

2(2m)T

σ
)

where εj(G) = P{x:x is misclassified as class j by G},
D′ =

∑
i∈j−nodes

1
γ2

i

, T ≤ N − 1 and R is the radius
of a ball containing the support of the distribution.

Observe that the error bound changes depending on
γi’s and T’s for DAGSVM and DB2. In DAGSVMs
T = N − 1, which is the worst case for DB2, and the
best case for DB2 is only T = 1. On the other hand,
the margin at each node is an unpredictable variable
depending on the kernel function, which makes us un-
able to compare the error bounds for the two methods.

5. Adaptive Approach

Maximizing the margin between two classes and the
usage of kernel functions are two of the main building
blocks of SVMs. Kernel functions offer an alternative
solution by mapping the data into a higher dimen-
sional feature space in which we can distinguish the
data more easily. There are different options for kernel
functions depending on the distribution of the training
data, but among various kernel functions, how should
one choose the best? The generalization ability of a
machine can be used as a criterion. To control the gen-
eralization ability of a machine, one has to minimize
the expectation of the test error, which can be achieved
by minimizing the following criterion (Vapnik, 1998):

R(D,w) = D2|w|2 (8)

where D is the radius of the smallest sphere that in-
cludes the training vectors,which is given as:

D2 =
l∑

i,j=1

βiβjK(xi, xj) (9)

and |w| is the norm of the weights of the hyper-plane
in feature space, which is obtained as:

|w| =
l∑

i,α

αiαjyiyjK(xi, xj) (10)

As stated in (Vapnik, 1998), among different kernel
functions (K(xi, xj)), the kernel that minimizes 8 will
yield the best SVM for the binary case.

In the previous papers (Hsu & Lin, ; Platt et al., 2000),
a constant kernel function was used in their experi-
ments for the entire multi-class problem. However, if
the classes do not have similar structure, using only
one kernel function may not be the best or it may not
work for every binary classification. Thus, for best re-
sults, each binary classification has to be considered
as an individual problem, and the best kernel should
be chosen for each classifier. In this paper, we utilize
an adaptive approach, which selects the best kernel for
each SVM classifiers.

6. Experimental Results

We evaluate the performance of DB2 based on ac-
curacy, training and testing times. We then com-
pare the results with one-against-one, one-against-rest
and DAGSVM. While in Table 2 we keep the kernel
function and its parameter(s) constant, in Table 3 we

Table 2. Accuracies
DB2 DAGSVM One-against-One One-against-rest
Rate (C, δ) Rate (C, δ) Rate (C, δ) Rate (C, δ)

Glass 73.5 211,21 73.8 210,2−3 72.0 29,2−3 71.9 29,2−1

Vowel 99.2 210,21 99.2 Inf,21 99.0 210,20 99.0 210,20

HRCT 84.8 211,22 82.4 210,23 82.4 211,23 91.2 211,22

Modis 70.1 210,22 69.7 212,22 66.2 210,22 69.3 210,22

SmallModis 96.0 210,22 98.2 212,23 95.1 210,21 96.5 210,22

Segment 96.4 29,20 96.6 21,23 96.6 29,21 95.2 210,21

Table 1. Data
#Samples # Features # Classes

HRCT 500 108 5
Modis 31299 169 15
SmallModis 5658 169 4
Glass 214 13 6
Vowel 528 10 11
Segment 2310 19 7

present the results for an adaptive approach. In our
experiments, we tested algorithms with varying pa-
rameters at each step and observed the difference in
accuracy. We determined the best kernel function and
related parameters by running experiments on a val-
idation set that is different from the test data. We
present the experimental results in section 6.

We test the algorithms on six different data sets whose
properties are provided in Table 1. Glass, vowel and
segment are data sets from the UCI repository (Blake
& Merz, 1998). HRCT data consists of high resolu-
tion computed tomography images of the lungs (Dy
& Brodley, 2000). The classes represent various lung
diseases.

Modis data is prepared by using the satellite images
of the earth surface and consists of fifteen different
classes representing fifteen different regions. Each re-
gion consists of various subregions. While selecting the
test set, we picked all the samples from the subregions
that are excluded from the training set. The Modis
data has an imbalanced distribution. The number of
samples in each class ranges from 261 to 6493.

We expect that if the problem consists of some small
classes and some relatively large classes, then DB2
should be faster in the training phase. That is why,
in order to illustrate this we also prepared a subprob-
lem (SmallModis), using four classes from the Modis
data. SmallModis has a skewed class distribution with
a large class of 4502 samples and three smaller classes
with 261, 411 and 466 samples.

6.1. Accuracy Comparison

In order to come up with more representative accuracy
performances, we divided the large data sets (Modis,
SmallModis and Segment) into three parts: The first
part of data for training, the second one as a validation
set to find the kernels and corresponding parameter(s)
and the last part is used as testing data. For the data
that has few samples, we used ten-fold-cross valida-
tion. We selected the best kernels among linear, poly-
nomial and radial basis functions. For polynomial ker-
nel parameters (δ), we limited our experiments from
two through five and for RBF (δ) from 2−3 through
25. Another variable, which has a role in the accu-
racy of SVMs is the cost parameter (C). We repeated
our experiment for various C values ranging from 28

through 212 and infinity.

We applied the Maxwins algorithm for combining the
classifiers in one-against-one. We select the class giv-
ing the highest output value as the winner for one-
against-rest. In case of an even voting or more than
one class giving the highest value, we simply select the
one with the lower index.

We show the results for DB2 and the third method
presented in section 2.1, where we divided the classes
into two subsets minimizing the difference of the num-
ber of data samples for each subset. Methods 1 or 2
gave similar accuracy performances.

Table 2 presents the results of the experiments, when
the standard way of using a single kernel is applied.
The best accuracy performances among the various
multi-class approaches for each data are highlighted.
For the HRCT and MODIS data, the polynomial ker-
nel gave the best result for every algorithm. The radial
basis function was the best kernel for the rest of the
data sets. We also provide the corresponding cost pa-
rameter (C) and δ values in the table.

We believe that an adaptive approach should be uti-
lized in any multi-class approach as pointed out in sec-
tion 5 (i.e., the best kernel should be used for each clas-
sifier). Table 3 presents the results for adaptive DB2,

Table 3. Accuracies for Adaptive Kernels

DB2 DAGSVM One-against-One One-against-rest
Rate Rate Rate Rate

Glass 80.2 79.3 76.6 75.1
Vowel 99.2 99.2 99.0 99.2
HRCT 92.2 86.4 83.7 92.3
Modis 70.4 70.8 68.2 70.1
SmallModis 98.5 98.5 98.1 97.0
Segment 96.4 97.5 97.5 96.2

and the adaptive versions for the other multi-class
methods. As expected, the adaptive versions gave bet-
ter accuracies for all the data sets. We observed that
for Glass and HRCT data sets, the adaptive approach
improved the accuracies significantly. On the other
hand, for easily separable data sets or the ones that
consists of similar structures, the adaptive version did
not provide any significant improvement.

From Table 2, we can say that the four non-adaptive
methods perform similarly in terms of accuracy. For
the HRCT data, one-against-rest seems to be prefer-
able. For the rest of the data sets, none of the
four algorithms performed significantly better than the
other. From Table 3, we observe that adaptive DB2
has a comparable performance with the best adaptive
method for each data in this experiment. In the next
subsection, we present a comparison of the algorithms
in terms of speed.

6.2. Time Comparison

We ran the experiments on an UltraSparc-III cpu with
750 MHz clock frequency and 2GB RAM and the al-
gorithms were implemented in matlab.

While testing the accuracies in the previous experi-
ments, we also measured the CPU time consumed by
each classifier and the results of the measurements are
presented in Table 4. For the small data sets where ten
fold cross validation is applied, we present the average
of the total time spent for the experiment.

As seen from the results, DB2 is the fastest algorithm
in most of the cases, with respect to testing time. Note
that, we used the third criterion given in section 2.1,
which has an important role in the speed of DB2. With
this criterion, the larger classes are separated from the
others in the earlier levels of the tree constructed by
DB2. The smaller classes are left for the later levels,
which makes it faster to train. Moreover, since most
of the data to be tested comes from the larger classes,
they are predicted in the earlier levels if no error oc-
curs. Thus, most of the data is classified using less

number of decision nodes, which speeds up the testing
process. For instance, in the testing phase of DB2, the
worst case happens when we apply N −1 nodes to the
test data, and the best case occurs when the testing
data can be predicted at the very first level. If we sep-
arate the largest class from the others at the first level,
most of the testing data can be predicted using only
one decision function of DB2. In other words, only one
binary SVM is enough for most of the testing data.

In HRCT and SmallModis data, there exist smaller
classes and a relatively larger class. As mentioned in
section 3, in such cases where data is skewed or un-
balanced, DB2 becomes preferable when we consider
training time.

On the other hand, if there are no skewed classes
within the problem, DB2 may lose its advantage. In
case, where data is evenly distributed as in the seg-
ment data set, DAGSVM can be faster depending on
the δ value of the problem. As described in section
3, if δ = 2, DAGSVM, one-against-one and DB2 have
the same time complexity in training but for δ > 2,
DAGSVM and one-against-one become faster in train-
ing than other algorithms.

To understand better the time complexity of the vari-
ous multi-class methods with respect to the number of
instances, we ran experiments with increasing numbers
of segment data samples. Using the same parameters
(δ = 2 , C = Inf.), we measured the CPU time for the
testing and training phases. In order to obtain homo-
geneous data sets with different numbers of samples,
we started with the first 100 samples of the segment
data and incremented it by 100 at each measurement.
We took 90% of the data as training and the rest as
testing.

Figure 3 and 4 display the plots for the training and
testing time respectively. Results show that one-
against-one and DAGSVM are the fastest methods in
training, followed closely by DB2. One-against-rest is
significantly slower than the other three. When we
consider the testing time, we observe that DB2 and

Table 4. CPU Time (in Seconds)

DB2 DAGSVM One-against-One One-against-rest
Train Test Train Test Train Test Train Test

Glass 48.7 2.1 32.3 2.6 31.0 6.3 142.6 6.8
Vowel 383.6 15.7 198.3 18.0 212.9 97.9 2881.1 82.4
HRCT 330.6 18.2 378.6 33.6 376.3 54.4 1336.1 83.5
SmallModis 3658.2 674.3 4236.5 982.6 4165.2 1876.5 23256.1 2958.5
Modis 236700 4203 35214 9590 34927 19060 973632 12008
Segment 1934.6 441.0 1549.4 417.8 1536.8 1227.1 9470.6 2036.4

DAGSVM are substantially faster than the other two.

0 500 1000 1500 2000 2500
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Number of Data Samples

C
pu

 ti
m

e

DB2
DAG
One−One
One−Rest

Figure 3. Training Time

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

Number of Data Samples

C
pu

 ti
m

e

DB2
DAG
One−One
One−Rest

Figure 4. Testing Time

7. Conclusions and Future Work

We have introduced a new method as a solution to
multi-class problems. DB2 has a flexible tree structure
and can be adjusted for different types of multi-class
problems. Benefiting from the tree structure, we were
able to present a generalization and time complexity
analysis. Our experiments show that for typical cases,
DB2 can be trained as fast as one-against-one algo-
rithms. Looking at the results, we can conclude that
DB2 is always faster than one-against-one and one-
against-rest algorithms in terms of testing time. Fur-
thermore, it is faster than DAGSVMs when the data is
unbalanced. For other data sets, DB2’s speed is close

to DAGSVM’s. In conclusion, we can say that DB2 is
an alternative to other multi-class methods with com-
parable accuracy performance and is preferable with
respect to speed, depending on the problem.

We also suggest that determining the best kernel func-
tions and parameters for every classifier within the
multi-class architecture can improve the accuracy sig-
nificantly, depending on the distribution of the data.
Our experimental results confirmed that indeed an
adaptive approach significantly improves the classifi-
cation accuracy.

As an extension to DB2, we can combine other exist-
ing multi-class methods with DB2 at different levels
of DB2 and produce a hybrid structure. For instance,
up to some level we can split the data into two and
then apply DAGSVM for the rest of the classes. Fur-
thermore, if we split one class out at every stage, we
come up with an algorithm that is very similar to one-
against-rest but faster than that. The idea is to com-
bine the strength of each multi-class method.

Another direction is to explore the benefits of using
different set of features at each level of the hierarchy,
similar to Dumais and Chen (2000). At each node
different features may be more relevant. Intuitively,
we expect that the idea can improve the accuracy for
problems with natural hierarchies. Moreover, we ex-
pect that an adaptive approach would gain more im-
portance when we allow the feature space to change at
each node.

The methods (1 & 2) provided in section 2.1 sum-
marize each class using first-order moment statistics.
We can take advantage of second-order moments sum-
maries and DB2 by optimizing discriminant analysis
functions such as tr(S−1

w Sb) where Sw is the within-
class-scatter and Sb is the between-class-scatter ma-
trices (Fukunaga, 1990). One may also search for the
best grouping by incorporating the kernel functions in
the criterion function. Determining the best method
for grouping the classes would be an interesting topic
for future work.

Acknowledgments

The authors wish to thank Mark Friedl from Boston
University for the Modis data. This research was par-
tially supported by Mercury Computer Systems, the
NSF funded CenSSIS (Center for Subsurface Sens-
ing and Imaging Systems), and NSF Grant No. IIS-
0347532.

References

Bennett, K. P., Cristianini, N., Shawe-Taylor, J., &
Wu, D. (2000). Enlarging the margins in perceptron
decision trees. Machine Learning, 41, 295–313.

Blake, C., & Merz, C. (1998). UCI repository of ma-
chine learning databases.

Crammer, K., & Singer, Y. (2000). On the learnability
and design of output codes for multiclass problems.
Computational Learing Theory (pp. 35–46).

Dumais, S. T., & Chen, H. (2000). Hierarchical clas-
sification of Web content. Proceedings of SIGIR-00,
23rd ACM International Conference on Research
and Development in Information Retrieval (pp. 256–
263). Athens, GR: ACM Press, New York, US.

Dy, J. G., & Brodley, C. E. (2000). Visualization and
interactive feature selection for unsupervised data.
Knowledge Discovery and Data Mining (pp. 360–
364).

Forgy, E. (1965). Cluster analysis of multivariate data:
Efficiency vs interpretability of classifications. Bio-
metrics, 21, 768–780.

Friedman, J. (1996). Another approach to polychoto-
mous classifcation (Technical Report). Stanford
University, Department of Statistics.

Fukunaga, k. (1990). Introduction to statistical pattern
recognition. Boston, MA: Academic Press. 2 edition.

Hsu, C., & Lin, C. A comparison of methods for multi-
class support vector machines. Technical report, De-
partment of Computer Science and Information En-
gineering, National Taiwan University, Taipei, Tai-
wan, 2001. 19.

Knerr, S., Personnaz, L., & Dreyfus, G. (1990). Single-
layer learning revisited: A stepwise procedure for
building and training a neural network. Neurocom-
puting: Algorithms, Architectures and Applications,
NATO ASI Series. Springer.

Platt, J. (1998). Sequential minimal optimization:
A fast algorithm for training support vector

machines. Technical Report 98-14, Microsoft
Research, Redmond, Washington, April 1998.
http://www.research.microsoft.com/ jplatt/smo.html.

Platt, J., Cristianini, N., & Shawe-Taylor, J. (2000).
Large margin dags for multiclass classification. Ad-
vances in Neural Information Processing Systems 12
(pp. 547–553).

Vapnik, V. (1995). The nature of statistical learning
theory. New York: Springer.

Vapnik, V. (1998). Statistical learning theory. New
York: Wiley.

Weston, J., & Watkins, C. (1999). Support vector ma-
chines for multiclass pattern recognition. Proceed-
ings of the Seventh European Symposium On Artifi-
cial Neural Networks.

